Abstract

Soil organic carbon stocks decrease after conversion of soils from pasture to cropland. It has been assumed that this applies especially to mineral hydromorphic soils. In this paper we evaluate hot-water extractable carbon (Chwe) as a measure for detecting long-term changes in the SOM following land use change. Furthermore, we assess whether a treatment of the soils with NaOCl leads to the isolation of long-term stable C fractions. For these purposes, we established a chronosequence of sandy hydromorphic soils that have been converted from pasture to cropland at different periods of history. To gain further insight into the impacts of different types of land use on carbon sequestration, soils under forest, either afforested or permanent, were studied. Bulk density, total organic carbon (TOC), Chwe, and NaOCl-resistant C were quantified in the surface soils of 72 Gleyic Podzols and Haplic Gleysols. The bulk density increased from 0.9 (±0.2) g cm−3 to 1.4 (±0.1) g cm−3 during the first 25 years after the conversion of the soils from permanent pasture to cropland. In the permanent pasture sites, the TOC concentration amounted to 35.4 (±12.1) g kg−1. It decreased to 12.88 (±5.9) g kg−1 during the first 46 years of cultivation (R2 = 0.71). In the permanent forest soils the TOC concentrations were significantly higher than in the soils that have been afforested. Chwe concentrations of the chronosequence sites were linearly correlated to the TOC concentrations (R2 = 0.84), while permanent forest sites exhibited significantly higher Chwe/TOC ratios. This shows that the determination of the Chwe is a very promising measure for detecting changes in SOM dynamics following afforestation. In the permanent pasture sites, 14.3 (±5.38) g kg−1 NaOCl-resistant C was measured, while 46 years after conversion, only 2.8 (±1.2) g kg−1remained. No enrichment of NaOCl-resistant C was observed in the chronosequence, as NaOCl-resistant C decreased faster in the course of cultivation than the TOC. Therefore, we conclude that that the C fraction that resists the oxidation with NaOCl is not long-term stable in soils, and most probably, there is no such long-term stable C fraction in the soils under study.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call