Abstract

In this article, a subject-specific finite element analysis has been developed to study a clinical case of a surgically misaligned hip prosthesis with an ultrashort stem. It was set out to study the strain energy density pattern, comparing the results obtained with computed tomography images. The authors developed two other numerical models: the first one analyzes the stress and strain distributions in the healthy femur (without prosthesis) and the second one analyzes the same boneimplant biomechanical system of the clinical case but assuming the prosthesis in the proper position. The misaligned prosthesis produced an overload at the proximal posterior plane of the femur, as confirmed by computed tomography images, which detect the formation of new bone. The numerical model of the correctly positioned prosthesis demonstrated that the bone is not overloaded and that the position of neutral axis does not significantly shift from the physiological condition.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call