Abstract

Ethnopharmacological relevanceType I interferon (IFN) is believed to play a pathogenic role in systemic sclerosis (SSc, also called scleroderma), which is an autoimmune rheumatic disease. Our previous studies have found that Chinese medicine formula Si–Ni-San (SNS, composed of Glycyrrhiza uralensis Fisch., Bupleurum chinense DC., Paeonia lactiflora Pall., and Citrus aurantium L.) had inhibitory effects on type I IFN responses. Among these herbal products, Paeonia lactiflora Pall. has been traditionally used to treat inflammation-related diseases, yet its therapeutic effects against type I IFN-related diseases and potential bioactive ingredients are not characterized. Aim of the studyWe aim to identify bioactive ingredient with anti-type I IFN activity from herbal products in SNS and further elucidate its therapeutic effect against scleroderma and underlying mechanisms. Materials and methodsWe constructed a Gaussia-luciferase (Gluc) reporter assay system to identify ingredients with anti-type I IFN activities from SNS. In RAW264.7 cells, real-time PCR (RT-PCR) and western blotting were used to investigate the induction of type I IFN pathway. Additionally, in a bleomycin (BLM)-induced experimental scleroderma model, the expression of fibrotic genes, type I IFN-related genes, inflammatory cytokines, and cytotoxic granules were measured by RT-PCR, and the histopathological changes were determined by H&E staining, Masson's staining and immunohistochemistry analysis. ResultsOur data demonstrated that total glucosides of paeony (TGP) was the bioactive component of SNS that selectively inhibited TLR3-mediated type I IFN responses and blocked type I IFN-induced downstream JAK-STAT signaling pathways. In the BLM-induced scleroderma mouse model, TGP ameliorated skin fibrosis by inhibiting multiple targets in the upstream and downstream of type I IFN signaling. Further research found that TGP hindered polarization of M2 macrophages and their profibrotic effects and reduced cytotoxic T lymphocytes and their cytotoxic granules by suppressing Cxcl9 and Cxcl10 in the skin tissue of scleroderma mice. ConclusionsOur study not only sheds novel lights into the immunoregulative effects of TGP but also provides convincing evidence to develop TGP-based therapies in the treatment of scleroderma and other autoimmune diseases associated with type I IFN signatures. ClassificationSkin

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call