Abstract

Drynariae Rhizoma is a kidney-tonifying herb that has a long history in clinical practice for the treatment of bone fractures and joint diseases in China. Flavonoids are considered to be its major active ingredients and are reported to ease bone loss in ovariectomized rats. However, the beneficial effects of the total flavonoids of Drynariae Rhizoma on osteoporosis caused by microgravity or mechanical inactivity remain unknown. This study assessed the effects of total Drynariae Rhizoma flavonoids (DRTF, Qihuang, Beijing, China, national medicine permit No. Z20030007, number of production: 04080081, content of DRTF ≥80%) against bone loss induced by simulated microgravity. A hindlimb unloading tail-suspended rat model was established to determine the effect of DRTF on bone mineral density (BMD), biomechanical strength and trabecular bone microarchitecture. Twenty-eight male Sprague–Dawley rats were divided into four groups: the baseline, control, hindlimb unloading with vehicle (HLU), and hindlimb unloading treated with DRTF (HLU–DRTF, 75 mg/kg/day) groups. Oral DRTF was administered for 4 weeks. The underlying mechanisms of the DRTF actions on disuse-induced osteoporosis are discussed. The results showed that DRTF treatment significantly increased the BMD and mechanical strength of tail-suspended rats. Enhanced bone turnover markers with HLU treatment were attenuated by DRTF administration. Deterioration of trabecular bone induced by HLU was prevented through elevated bone volume/tissue volume (BV/TV), trabecular number (Tb. N), trabecular thickness (Tb. Th) and decreased trabecular separation (Tb. Sp). The present study provides the first evidence that DRTF prevents bone loss induced by HLU treatment, indicating its potential application in the treatment of disuse-induced osteoporosis.

Highlights

  • IntroductionSpace flight or prolonged bed rest interrupts the bone homeostasis between bone formation and bone resorption, leading to various disorders, such as bone loss [1], muscle atrophy [2], immune function decline [3,4], and neuropsychiatric symptoms [5]

  • Mechanical loading is critical for the maintenance of skeletal integrity

  • Herbal extracts instead of a single component agent are frequently used in proprietary traditional Chinese medicine products; our study investigated the osteo-protective effect of total flavonoids, the main active ingredients in Drynariae Rhizoma, on bone mineral density and characterized the microarchitecture of trabecular bone using hindlimb unloading with vehicle (HLU) rats

Read more

Summary

Introduction

Space flight or prolonged bed rest interrupts the bone homeostasis between bone formation and bone resorption, leading to various disorders, such as bone loss [1], muscle atrophy [2], immune function decline [3,4], and neuropsychiatric symptoms [5]. Molecules 2017, 22, 1033 respectively, in 18 control subjects who followed the same bed rest protocol without exercise. Among astronauts and cosmonauts who participated in long duration flights aboard Mir space station (Mir) and International space station (ISS), >50% of the crew members had a ≥ 10% loss in at least one skeletal site, and 22% of the Mir cosmonauts had a 15%–20% loss in at least one site [6,7]. Disuse-induced osteoporosis threatens the safety and health of astronauts during space flight, and increases the susceptibility to fractures in patients and the elderly requiring bed rest. It is essential to identify relevant countermeasures, such as drug intervention, strengthening exercises [8], and nutrition [9] to reduce or prevent such bone loss

Methods
Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.