Abstract

potential energies as control indices. This paper documents the first known application of a total energy control system design for helicopter control. Energy change rate and energy distribution rate are manipulated to provide automatic tracking of desired altitude, velocity, and flight-path-angle profiles for a Westland Lynx helicopter. A linearized helicopter dynamic model is obtained in the total energy control system framework, and control laws are synthesized using H1 control theory and the method of linear matrix inequalities. Numerical simulation is used to verify the effectiveness of the proposed total energy control system helicopter flight control laws. The total energy control system reduces engine fuel consumption by alleviating unnecessary fluctuations in energy change and distribution rates when tracking flight path and propulsion commands.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.