Abstract
Rothblum showed that the convex hull of the stable matchings of a bipartite preference system can be described by an elegant system of linear inequalities. In this paper we prove that the description given by Rothblum is totally dual integral. We give a constructive proof based on the results of Gusfield and Irving on rotations, which gives rise to a strongly polynomial algorithm for finding an integer optimal dual solution.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.