Abstract

Let $G$ be a simple graph with vertex set $V$. A double Roman dominating function (DRDF) on $G$ is a function $f:Vrightarrow{0,1,2,3}$ satisfying that if $f(v)=0$, then the vertex $v$ must be adjacent to at least two vertices assigned $2$ or one vertex assigned $3$ under $f$, whereas if $f(v)=1$, then the vertex $v$ must be adjacent to at least one vertex assigned $2$ or $3$. The weight of a DRDF $f$ is the sum $sum_{vin V}f(v)$. A total double Roman dominating function (TDRDF) on a graph $G$ with no isolated vertex is a DRDF $f$ on $G$ with the additional property that the subgraph of $G$ induced by the set ${vin V:f(v)ne0}$ has no isolated vertices. The total double Roman domination number $gamma_{tdR}(G)$ is the minimum weight of a TDRDF on $G$. In this paper, we give several relations between the total double Roman domination number of a graph and other domination parameters and we determine the total double Roman domination number of some classes of graphs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.