Abstract

Using hypergraph transversals it is proved that $\gamma_t(Q_{n+1}) = 2\gamma(Q_n)$, where $\gamma_t(G)$ and $\gamma(G)$ denote the total domination number and the domination number of $G$, respectively, and $Q_n$ is the $n$-dimensional hypercube. More generally, it is shown that if $G$ is a bipartite graph, then $\gamma_t(G \square K_2) = 2\gamma(G)$. Further, we show that the bipartiteness condition is essential by constructing, for any $k \ge 1$, a (non-bipartite) graph $G$ such that $\gamma_t(G\square K_2) = 2\gamma(G) - k$. Along the way several domination-type identities for hypercubes are also obtained.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.