Abstract

BackgroundThe total contact cast (TCC) is an effective intervention to reduce plantar pressure in patients with diabetes and a plantar forefoot ulcer. The walls of the TCC have been indirectly shown to bear approximately 30 % of the plantar load. A new direct method to measure inside the TCC walls with capacitance sensors has shown that the anterodistal and posterolateral-distal regions of the lower leg bear the highest load. The objective of this study was to directly measure these two regions in patients with Diabetes and a plantar forefoot ulcer to further understand the mechanism of pressure reduction in the TCC.MethodsA TCC was applied to 17 patients with Diabetes and a plantar forefoot ulcer. TCC wall load (contact area, peak pressure and max force) at the anterodistal and posterolateral-distal regions of the lower leg were evaluated with two capacitance sensor strips measuring 90 cm2 (pliance®, novel GmbH, Germany). Plantar load (contact area, peak pressure and max force) was measured with a capacitance sensor insole (pedar®, novel GmbH, Germany) placed inside the TCC. Both pedar® and pliance® collected data simultaneously at a sampling rate of 50Hz synchronised to heel strike. The magnitude of TCC wall load as a proportion of plantar load was calculated. The TCC walls were then removed to determine the differences in plantar loading between the TCC and the cut down shoe-cast for the whole foot, rearfoot, midfoot and forefoot (region of interest).ResultsTCC wall load was substantial. The anterodistal lower leg recorded 48 % and the posterolateral-distal lower leg recorded 34 % of plantar contact area. The anterodistal lower leg recorded 28 % and the posterolateral-distal lower leg recorded 12 % of plantar peak pressure. The anterodistal lower leg recorded 12 % and the posterolateral-distal lower leg recorded 4 % of plantar max force. There were significant differences in plantar load between the TCC and the cut down shoe-cast for the whole foot, rearfoot, midfoot and forefoot (region of ulcer). Contact area significantly increased by 5 % beneath the whole foot, 8 % at the midfoot and 6 % at the forefoot in the shoe-cast (p < 0.05). Peak pressure significantly increased by 8 % beneath the midfoot and 13 % at the forefoot in the shoe-cast (p < 0.05). Max force significantly increased 6 % beneath the midfoot in the (shoe-cast p < 0.05).ConclusionIn patients with diabetes and a plantar forefoot ulcer, the walls of the TCC bear considerable load. Reduced plantar contact area in the TCC compared to the shoe-cast suggests that the foot is suspended by the considerable load bearing capacity of the walls of the TCC which contributes mechanically to the pressure reduction and redistribution properties of the TCC.

Highlights

  • The total contact cast (TCC) is an effective intervention to reduce plantar pressure in patients with diabetes and a plantar forefoot ulcer

  • Offloading plantar neuropathic ulcers using a TCC is regarded as the ‘gold standard’ treatment for this condition [19,20,21,22] the evidence supporting this has been referred to being of only moderate quality [17, 18, 23]

  • The reduced plantar contact area in the TCC, compared to the shoecast, suggests that the foot is suspended by the considerable load bearing capacity of the walls of the TCC, which contributes mechanically to the pressure reduction and Comparison with the literature Various studies have assessed load transference to the cast walls by indirect methods in small samples of healthy participants

Read more

Summary

Introduction

The total contact cast (TCC) is an effective intervention to reduce plantar pressure in patients with diabetes and a plantar forefoot ulcer. There is a chronic and ongoing disruption in the phases of healing producing cellular injury; which is recognised as one of the factors responsible for poor wound healing [4, 6,7,8,9] It has been demonstrated histologically, that the application of a total contact cast results in the chronic ulcer resembling an acute wound in the reparative phase; that there is a reduction of inflammatory and reactive components, and an acceleration of reparative processes of the wound [10]. A fine balance must be achieved whereby plantar load is reduced to allow ulcer healing whilst allowing the patient to remain ambulatory. This is problematic since the thresholds for developing ulceration, likewise for healing a plantar ulcer, are yet to be established [3, 12,13,14]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call