Abstract

The (total) connected domination game on a graph \(G\) is played by two players, Dominator and Staller, according to the standard (total) domination game with the additional requirement that at each stage of the game the selected vertices induce a connected subgraph of \(G\). If Dominator starts the game and both players play optimally, then the number of vertices selected during the game is the (total) connected game domination number (\(\gamma_{\rm tcg}(G)\)) \(\gamma_{\rm cg}(G)\) of \(G\). We show that \(\gamma_{\rm tcg}(G) \in \{\gamma_{\rm cg}(G),\gamma_{\rm cg}(G) + 1,\gamma_{\rm cg}(G) + 2\}\), and consequently define \(G\) as Class \(i\) if \(\gamma_{\rm tcg}(G) = \gamma_{\rm cg} + i\) for \(i \in \{0,1,2\}\). A large family of Class \(0\) graphs is constructed which contains all connected Cartesian product graphs and connected direct product graphs with minumum degree at least \(2\). We show that no tree is Class \(2\) and characterize Class \(1\) trees. We provide an infinite family of Class \(2\) bipartite graphs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call