Abstract

Inductively coupled plasma with mass spectrometric detection (ICP-MS) has been used for clinical analysis of cobalt (Co) due to its sensitivity and specificity; however, media-specific validation studies are lacking. This study provides data on performance variables affecting differences between selected analytical platforms (Perkin Elmer and Agilent), tissue sample preparation, storage, and interferences affecting measurements in whole blood, serum, and synovial fluid. The limits of detection (LOD) range from 0.2–0.5 µg/L in serum and synovial fluid, and 0.6–1.7 µg Co/L in whole blood. The Agilent platform with collision reaction cell is more sensitive, while the Perkin Elmer platform with dynamic reaction cell demonstrates more polyatomic interferences near the LOD for serum and whole blood. Split sample analysis showed good accuracy, precision, and reproducibility between serum Co measurements using acid digestion or detergent dilution preparations for persons with metal hip implants or following supplement intake. The results demonstrated reliability of the ICP-MS methodology across the two analytical platforms and between two commercial laboratories for Co concentrations above 5 µg Co/L, but digestion procedures and polyatomic interferences may affect measurements in some media at lower concentrations. These studies validate the described ICP-MS methodology for clinical purposes with precautions at low cobalt concentrations (<5 µg Co/L).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.