Abstract

AbstractUsing a new proof technique of the first author (by adding a new vertex to a graph and creating a total colouring of the old graph from an edge colouring of the new graph), we prove that the TCC (Total Colouring Conjecture) is true for any graph G of order n having maximum degree at least n - 4. These results together with some earlier results of M. Rosenfeld and N. Vijayaditya (who proved that the TCC is true for graphs having maximum degree at most 3), and A. V. Kostochka (who proved that the TCC is true for graphs having maximum degree 4) confirm that the TCC is true for graphs whose maximum degree is either very small or very big.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.