Abstract

The dengue capsid protein C is a highly basic alpha-helical protein of ∼100 amino acid residues that forms an emphipathic homodimer to encapsidate the viral genome and to interact with viral membranes. The solution structure of dengue 2 capsid protein C (DEN2C) has been determined by NMR spectroscopy, revealing a large dimer interface formed almost exclusively by hydrophobic residues. The only acidic residue (Glu87) conserved in the capsid proteins of all four serotypes of dengue virus forms a salt bridge with the side chains of Lys45 and Arg55′. To understand the structural and functional significance of this conserved salt bridge, we chemically synthesized an N-terminally truncated form of DEN2C (WTDEN2C) and its salt bridge-void analog E87ADEN2C using the native chemical ligation technique developed by Kent and colleagues. Comparative biochemical and biophysical studies of these two synthetic proteins using circular dichroism spectroscopy, fluorescence polarization, protein thermal denaturation, and proteolytic susceptibility assay demonstrated that the conserved salt bridge contributed to DEN2C dimerization and stability as well as its resistance to proteolytic degradation. Our work provided insight into the role of a fully conserved structural element of the dengue capsid protein C and paved the way for additional functional studies of this important viral protein.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.