Abstract
The active capacitance response to increased intracranial pressure (Pic) was studied in nine chloralose-anesthetized dogs. The vena cavae were cannulated and drained into a reservoir as blood was pumped at a constant flow (Q) into the right atrium. Central blood volume was determined as Q times the mean transit time of dye from the right atrium to the aortic root. Arterial compliance (Ca) was determined from the monoexponential decay of systemic arterial pressure (SAP) during vagal cardiac arrest to compute changes in arterial volume (delta SAP X Ca). Atropine was administered to prevent bradycardia and dangerous, constant cardiac output-induced increases in pulmonary arterial (PAP) and right and left atrial pressures. Blood volume shifts indicative of active venoconstriction, included changes in reservoir, central, and arterial volumes during Pic of 100-200 mmHg. Raised Pic, after atropine, induced a tachycardia, increased systemic and pulmonary resistances, and increased SAP and PAP. Venoconstriction caused marked blood shifts between 125 and 200 mmHg Pic. The extrapolated response threshold was about 112 mmHg. In the most sensitive range, venoconstriction amounted to 3.9 ml X kg-1 per 25-mmHg change in Pic. These results indicate that intense active capacitance vessel constriction is an important part of cardiovascular hemostasis during rapidly increased intracranial pressure.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.