Abstract

Pyrogenic carbon (PyC), a by-product of recurrent boreal wildfires, is an important component of the global soil C pool, although precise assessment of boreal PyC stock is scarce. The overall objective of this study was to estimate total C stock and PyC stock in forest floors of Eastern Canada boreal forests. We also investigated the environmental conditions controlling the stocks and characterized the composition of the forest floor layers. Forest floor samples were collected from mesic black spruce sites recently affected by fire (3–5yr) and analyzed using elemental analysis and solid state 13C nuclear magnetic resonance (NMR) spectroscopy. PyC content was further estimated using a molecular mixing model. Total C stock in forest floors averaged 5.7±2.9kgC/m2 and PyC stock 0.6±0.3kgC/m2. Total stock varied with position in the landscape, with a greater accumulation of organic material on northern aspects and lower slope positions. In addition, total stock was significantly higher in spruce-dominated forest floors than stands where jack pine was present. The PyC stock was significantly related to the atomic H/C ratio (R2 0.84) of the different organic layers. 13C NMR spectroscopy revealed a large increase in aromatic carbon in the deepest forest floor layer (humified H horizon) at the organic-mineral soil interface. The majority of the PyC stock was located in this horizon and had been formed during past high severity fires rather than during the most recent fire event.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call