Abstract

Ethnopharmacological relevanceLeonurus japonicus Houtt., also known as motherwort, is a traditional Chinese medicine that was first identified in Shennong Bencao Jing, the first and essential pharmacy monograph in China. L. japonicus has been regarded as a good gynecological medicine since ancient times. It has been widely used in clinical settings for treatment of gynecological diseases and postnatal rehabilitation with good efficacy and low adverse effects. Aim of the studyThe main purpose of this study was to determine the angiogenic and wound healing effects of total alkaloid fraction from L. japonicus Houtt. (TALH) in vivo and in vitro. In addition, the main bioactive components of total alkaloids were to be identified and analyzed in this study. Materials and methodsFirst, the UHPLC/Q-TOF-MS method was used to identify and quantify the major components in the TALH extract. The wound healing activity was evaluated in vivo using a rat full-thickness cutaneous wound model. Histological study of wound healing in rat model was performed via immunohistochemistry and immunofluorescence. Cell proliferation was determined by MTT assay. Wound healing and transwell assays were used for detection of cell migration. The effect on tube formation was determined by tube formation assay in HUVECs. Western blot and RT-PCR were used to detect the expressions of relative proteins and genes respectively. Knock-down of SRC by siRNA was done to verify the crucial role of SRC in promotion of angiogenesis induced by TALH. ResultsSeven characteristic peaks were recognized in the UHPLC/Q-TOF-MS spectrum, while four of the main components were quantified. The wound model in rats showed that treatment of TALH promoted wound healing by stimulating cellular proliferation and collagen deposition. In vitro experiments showed that co-treatment of TALH and VEGF increased cell proliferation, migration and tube formation in HUVECs. Mechanistic studies suggested that the co-treatment increased gene expressions of SRC, MEK1/2 and ERK1/2, as well as the phosphorylation levels of these proteins. Furthermore, the effect of co-treatment was attenuated after SRC knockdown, suggesting that SRC plays an important role in angiogenesis and wound healing induced by TALH and VEGF co-treatment. ConclusionOur results showed that TALH was one of the main active components of L. japonicus that promoted angiogenesis and wound healing by regulating the SRC/MEK/ERK pathway. Our study provided scientific basis for better clinical application of L. japonicas.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call