Abstract

A twisted torus knot is obtained from a torus knot by adding a number of full twists to some adjacent strands of the torus knot. In this paper, we show that if a twisted torus knot is a torus knot, then the number of added full twists is generically at most two in absolute value. We also show that this bound is the best possible by classifying twisted torus knots for which the upper bound is attained. 57N10

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.