Abstract
In order to show that some periodic orbits of a fifth-order system of magnetoconvection are embedded in a three-dimensional subspace, main projections onto a three-dimensional subspace from the five-dimensional space are numerically investigated. It is found that the periodic orbits are topologically equivalent to a (p, q)-torus knot, where its curve closes after rotating q times in the meridional direction and p times in the longitudinal direction. In terms of a braid word for the torus knot, a (2, 7)-torus knot is finally obtained in the fifth-order system through the complicated bifurcations under parameter variation. This suggests that topological invariants embedded in a three-manifold can be extracted from realistic dissipative higher dimensional dynamical systems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.