Abstract

We construct smooth Calabi-Yau threefolds Z, torus-fibered over a dP_9 base, with fundamental group Z_2 X Z_2. To do this, the structure of rational elliptic surfaces is studied and it is shown that a restricted subset of such surfaces admit at least a Z_2 X Z_2 group of automorphisms. One then constructs Calabi-Yau threefolds X as the fiber product of two such dP_9 surfaces, demonstrating that the involutions on the surfaces lift to a freely acting Z_2 X Z_2 group of automorphisms on X. The threefolds Z are then obtained as the quotient Z=X/(Z_2 X Z_2). These Calabi-Yau spaces Z admit stable, holomorphic SU(4) vector bundles which, in conjunction with Z_2 X Z_2 Wilson lines, lead to standard-like models of particle physics with naturally suppressed nucleon decay.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.