Abstract

An efficient triple azo coupling reaction between anilines and phloroglucinol furnished a series of C(3)-symmetric molecules 7-9 supporting multiple conjugation pathways that converge at the molecular core. A combination of (1)H/(13)C NMR spectroscopy, X-ray crystallography, and density functional theory computational studies provided a coherent picture of the [n,pi]-conjugated molecular core, which is best described as the tris(hydrazone) [rather than tris(azo)] tautomer stabilized by resonance-assisted hydrogen bonding. For a homologous series of compounds, an increase in the torsional angles between the planar molecular core and the peripheral aryl groups results in a systematic blue shift in the low-energy electronic transitions (7, 523 nm; 8, 505 nm; 9, 445 nm in CHCl(3)) that qualitatively correlates with the shrinkage of effective conjugation through structural distortion. Similar spectral shifts could also be induced by amine substrates that interact with the intramolecular hydrogen-bonding network to trigger bond-twisting motions. Specifically, a brief exposure of a thin film of 7 to vapor samples of butyl-, hexyl-, diethyl-, and diisopropylamine resulted in a rapid and reversible color change from pink to dark-orange. Under similar conditions, however, triethylamine did not elicit any detectable color change, despite the fact that it has a significantly higher vapor pressure than n-hexylamine. These findings implicate that the hydrogen-bonding donor ability is a key requirement for the binding-induced conformational switching, which allows for direct naked-eye detection of volatile amines under ambient conditions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.