Abstract

In this paper, torsional vibration analysis of single-walled carbon nanotube–buckyball systems is carried out. The buckyball is attached to single-walled carbon nanotube (SWCNT) at one end and the other end of SWCNT is fixed. Such nanostructures are promising for tunable nanoresonators whose frequency can be altered by attaching different buckyballs. Nonlocal elasticity is utilized to examine the small-scale effect on the nanoresonators and derive the torsional frequency equation and nonlocal transcendental equation. Based on these equations, numerical results are obtained for the dependence of the frequency on the mass moment of inertia. The analytical expressions of nonlocal frequencies are also derived when the buckyballs mass moment of inertias are much larger than that of SWCNTs. In addition, effort is made to study the influence of nonlocal parameter and attached buckyball on the torsional frequency of the nanoresonators.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.