Abstract
Precise mapping of protein-binding sites on DNA is an important application of atomic force microscope (AFM) imaging. For a reliable measurement of distances on curved DNA molecules, an image-processing algorithm is required, which extracts the DNA contour from topographic AFM data. To this end we implemented an image analysis method providing an efficient way to obtain the contour together with a physical map of single and multiple protein-binding sites. This method relies on a calculation of the height profile along the DNA fragment, allowing one to determine the DNA length and the relative position of the binding site occupied by a protein. As a first test, complexes of the LexA repressor protein from the Escherichia coli SOS system and DNA fragments containing a specific LexA binding site (recA operator) were imaged by the torsional resonance mode (TR mode) and analyzed using the specialized algorithm. A topographic height of less than 0.5 nm of the DNA molecules indicates repulsive imaging conditions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.