Abstract

Introduction. The aim of the article is a mathematical model of vibrations of working part of screw conveyer for transporting friable loads taking into account the changes of closeness of the processed environment, speed of circulation of screw, weight while appearing of the phenomenon of resonance. Materials and methods. It is recesrced the turning vibrations of spiral working part of screw multifunctional conveyer, which appeare as a result of action of processing environment. The recerch was carried out by mathematical modelling method. Results and discussions. The limiting factors which complicate a design are the unevenness of the division of environment along the length of screw; a body makes flexible vibrations; the motion of the processed environment along the working screw causes the small vibrations of bend, causes appearance of “additional forces”. For providing the authenticity of mathematical model ti has been introduced the next suppositions: the working part of screw is turned with the permanent angle speed around its longitudinal which in the undeformed position coincides coincides with an axis OX; the transversal transferring of neutral axis of working screw at the arbitrary moment in perpendicular direction of its undeformed position is determined by the vector (in relation to the fixed frame of reference of OXYZ); the continuous stream of processed environment,while its weight changes on unit length slowly along a screw and moves with permanent relative (in relation to working screw) speed. A mathematical model takes into account the limitation and supposition for the existent screw conveyer with the length of 2,5 and 3 m, which is used for moving the friable loads with the consistence of 10, 20, 40 kg/m. The alternative parameters are the length of the screw,the consistence of the processed environment, the speed of circulation ofthe screw , weight On the basis of model the dependences of amplitude of vibrations on the lengthof screw , cosistence of the processed environment, the speed of circulation of the screw, weight are built. Conclusions. A mathematical model allows to improve the process of development and designing of the screw conveyers of the friable loads providing the reliability of process of transportion and system “the processed environment – the screw working part”.

Highlights

  • The aim of the article is a mathematical model of vibrations of working part of screw conveyer for transporting friable loads taking into account the changes of closeness of the processed environment, speed of circulation of screw, weight while appearing of the phenomenon of resonance

  • A mathematical model takes into account the limitation and supposition for the existent screw conveyer with the length of 2,5 and 3 m, which is used for moving the friable loads with the consistence of 10, 20, 40 kg/m

  • A mathematical model allows to improve the process of development and designing of the screw conveyers of the friable loads providing the reliability of process of transportion and system “the processed environment – the screw working part”

Read more

Summary

Introduction

The aim of the article is a mathematical model of vibrations of working part of screw conveyer for transporting friable loads taking into account the changes of closeness of the processed environment, speed of circulation of screw, weight while appearing of the phenomenon of resonance. The conducted analysis of the state of the modern technologies and literary-patent search of constructions of cars and mechanisms for realization of transporting of friable materials [1,2,3] has showed that in one or another measure they satisfy considerable part of requirements which are pulled out to them , most constructions of working of working parts of conveyers carry out the forward axial moving of material and implementation of circulating motion, that reduces productivity of such mechanisms They have a simple construction maximum, differ in acompactness and they are reliable in exploitation. The substantial disadvantage ofscrew mechanisms is reduction of their productivity at large frequencies of rotation as a result of increasing of centrifugal forces in the zone of loading that leads to increase of power-hungryness of process of transporting such kinds of devices

Objectives
Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.