Abstract

Compared to probe-tuned optomechanical cavity systems, coupled cavity systems have the merit of having much stronger optomechanical interactions. However, to date, the torsional optomechanical effects of coupled cavities have rarely been investigated. In this Letter, we report a torsional optical spring effect in coupled nanobeam photonic crystal cavities. One of the cavities is suspended by a multi-degree-of-freedom spring mechanism that supports torsional vibration modes. The cavities' light field acts in reverse on the selected torsional mode, thus generating a torsional optical spring effect. The experimental results show that the third-order torsional mode of the spring mechanism is optically stiffened and a maximum frequency increase of 77.1Hz is obtained. The device provides a novel configuration for the optomechanical design of a new degree of freedom (torsional motion) and the coupled cavities are favorable for strong optomechanical interactions in the torsional direction.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call