Abstract

The electronic and optical properties of hydrogenated silicene at different torsion angles are investigated using the density functional theory (DFT). It was found that when silicene was hydrogenated, the Si atoms were pulled out of plane due to covalent interactions between the Si and H atoms, increasing their flexural height to 0.731 Å. Torsional deformation decreases the structural stability of hydrogenated silicene and its adsorption energy decreases with increasing twist angle. Under the effect of torsion deformation, the bandgap of hydrogenated silicene increases and then decreases. The bandgap is 2.168[Formula: see text]eV at a torsion angle of 0∘, indicating a wide bandgap semiconductor. Mulliken’s charge population analysis shows that charge transfer occurs between Si–H atoms, with Si atoms losing electrons and becoming positively charged and H atoms gaining electrons and becoming negatively charged. From the analysis of optical properties, the torsional deformation induced the maximum absorption and reflection peaks of all the hydrogenated silicene systems to appear in the ultraviolet region. Compared with the system without torsional deformation, these peaks exhibit varying degrees of red and blue shifts. The above findings provide guidance for the application of silicene in nanooptoelectronic devices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.