Abstract
The use of fiber reinforced cementitious matrix (FRCM) composites has been studied for flexural and shear strengthening of reinforced concrete (RC) members, but currently there are no studies on its use for torsional strengthening. This paper presents the results of an experimental study in which solid rectangular RC beams were externally strengthened with PBO-FRCM composite material in different wrapping configurations to investigate the torsional behavior in terms of strength, rotational ductility, and failure mode. Increases in the cracking torque, torsional strength, and corresponding values of twist were achieved by beams strengthened with a 4-sided wrapping configuration relative to the control (unstrengthened) beam. On the other hand, the 3-sided wrapping configuration was found to be largely ineffective in improving the torsional performance due to excessive fiber slippage. The contribution of the strengthening system to the torsional strength was reasonably predicted (±20%) by the strain measured in the composite fibers. Provisions used to estimate the torsional strength of RC beams with fully-wrapped, externally-bonded fiber reinforced polymer (FRP) composites were found to be applicable to beams strengthened with PBO-FRCM composite.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.