Abstract

This investigation deals with the torsional balance of the earthquake response and design of elastic asymmetric structures with frictional dampers. Plan asymmetry leads to an uneven lateral deformation demand among structural members and to unbalanced designs with larger capacities in some resisting planes. Frictional dampers are capable of controlling lateral-torsional coupling by placing the so-called empirical center of balance (ECB) of the structure at equal distance from all edges of the building. This rule is developed for single-story systems with linear and inelastic behavior. However, recently obtained theoretical and experimental results demonstrate that this rule carries over to multistory structures. Results show that the peak displacement demand at the building edges and that of resisting planes equidistant from the geometric center may be similar if the damper is optimally placed. It is also shown that torsional amplification of the edge displacements of arbitrary asymmetric structures relative to the displacement of the symmetric counterparts are approximately bound by a factor of 2. Furthermore, frictional dampers are equally effective in controlling lateral-torsional coupling of torsionally flexible as well as stiff structures. Copyright © 2005 John Wiley & Sons, Ltd.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call