Abstract
Inspired by the LG/CY correspondence, we study the local index theory of the Schrödinger operator associated to a singularity defined on \(\mathbb {C}^{n}\) by a quasi-homogeneous polynomial f. Under some mild assumption to f, we show that the small time heat kernel expansion of the corresponding Schrödinger operator exists and is a series of fractional powers of time t. Then we prove a local index formula which expresses the Milnor number of f by a Gaussian type integration. The heat kernel expansion provides the spectral invariants of f. Furthermore, we can define the torsion type invariants associated to a homogeneous singularity. The spectral invariants provide another way to classify the singularity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.