Abstract
Due to its unique electromechanical properties, nanomaterial has become a promising material for use in the sensing elements of strain sensors. Tensile strain is the type of deformation most intensively studied. Torsion is another deformation occurring in everyday life, but is less well understood. In the present study a torsion sensor was prepared by wrapping woven graphene fabrics (GWFs) around a polymer rod at a specific winding angle. The GWF sensor showed an ultra-high sensitivity with a detection limit as low as 0.3 rad m(-1), indicating its potential application in the precise measurement of low torsions. The GWFs were pre-strained before wrapping on polydimethylsiloxane (PDMS) to improve the tolerance of the sensor to high torsion. The microstructure of the GWFs at different torsion levels was monitored using an optical microscope. The results demonstrated the formation of GWF waves and cracks under high torsion, a critical factor in determining the electromechanical properties of a GWF sensor.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.