Abstract

The main results of this paper involve general algebraic differentials $\omega$ on a general pencil of algebraic curves. We show how to determine if $\omega$ is integrable in elementary terms for infinitely many members of the pencil. In particular, this corrects an assertion of James Davenport from 1981 and provides the first proof, even in rather strengthened form. We also indicate analogies with work of Andre and Hrushovski and with the Grothendieck-Katz Conjecture. To reach this goal, we first provide proofs of independent results which extend conclusions of relative Manin-Mumford type allied to the Zilber-Pink conjectures: we characterize torsion points lying on a general curve in a general abelian scheme of arbitrary relative dimension at least 2. In turn, we present yet another application of the latter results to a rather general pencil of Pell equations $A^2-DB^2=1$ over a polynomial ring. We determine whether the Pell equation (with squarefree $D$) is solvable for infinitely many members of the pencil.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.