Abstract

We investigate the motion of a spinning test particle in a spatially-flat FRW-type space-time in the framework of the Einstein-Cartan theory. The space-time has a torsion arising from a spinning fluid filling the space-time. We show that for spinning particles with nonzero transverse spin components, the torsion induces a precession of particle spin around the direction of the fluid spin. We also show that a charged spinning particle moving in a torsion-less spatially-flat FRW space-time in the presence of a uniform magnetic field undergoes a precession of a different character.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.