Abstract
This study investigated the characteristics of rainfall-triggered landslides during the Typhoon Bilis in the Dongjiang Reservoir Watershed, China. The comparative shallow landslide susceptibility mappings (LSMs) were produced by the ensemble data-driven statistical models in a GIS environment. At first, the landslide inventory for the study area was prepared from the high-resolution QuickBird images, and China–Brazil Earth Resources Satellite images, and field survey. Other necessary data for landslide susceptibility analysis such as the amount of rainfall, geology, and topography were also collected from the respective agencies. Twelve predisposing factors were then prepared using this available dataset. To reduce the subjectivity of models and caution in the selection of predisposing factors, and to avoid the spatial autocorrelation redundancy, certainty factor approach was attempted to optimize these twelve set of parameters. For validating the accuracy of the model, the original landslide data were randomly divided into two parts: 70% (1545 landslides) for training the model and the remaining 30% (662 landslides) for validation. The verified results showed that using the optimized predisposing factors has a higher performance than using all the original twelve factors. The results of ensemble models also showed that LSM maps prepared using binary logistic regression (accuracy is 0.848) model are more accurate than those prepared using bivariate statistical analysis (accuracy is 0.837) model. Additionally, our analysis concludes that the short duration and high-intensity rainfall, drainage density, lithology, and curvature are the major influencing factors for landslide occurrences in this case study area. This research provides an improved understanding of the mechanism of landslides caused by the typhoons for the adjoining watersheds nearby the reservoir. The preliminary understandings and approach could also be applied in similar geological and rainfall-triggered case study sites in the other parts of the world for risk mitigation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.