Abstract

Torrefaction is a thermal conversion method of biomass used to produce a high-quality solid biofuel that can be used for combustion, gasification, and additional non–energy-related applications. Torrefied biomass has numerous advantages above today’s standard biomass fuels like log wood, wood chips, and white wood pellets (WWPs). This is known and promoted for long, and has been proven in numerous research and demonstration projects; however, large-scale industrial proof is still underway only in these days. First, project implementations with name plate capacity of 100 kmt/a or higher are in construction or hot commissioning. In this review, the main advantages of torrefaction are shortly described, and the latest industry developments and future opportunities for the products as well as areas of need for further R&D are presented.

Highlights

  • Torrefaction is a process in which biomass, independent if it is woody or herbaceous biomass, biomass from agriculture, energy crops, land management, or even recycled biomass, is thermally treated, reducing the content of volatile components

  • Akin to pyrolysis and charring in a general process setup, torrefaction is carried out at a lower temperature so that a higher proportion of the feedstock calorific value is retained in the resulting solid product still achieving the target to produce an ideal solid biofuel for many applications

  • During the process of torrefaction, the biomass is heated to 180–350°C and partly devolatilizes, leading to a decrease in solid mass, but the initial energy content of the feedstock biomass is mainly preserved in the solid product

Read more

Summary

INTRODUCTION

Torrefaction is a process in which biomass, independent if it is woody or herbaceous biomass, biomass from agriculture, energy crops, land management, or even recycled biomass, is thermally treated, reducing the content of volatile components. Akin to pyrolysis and charring (full carbonization) in a general process setup, torrefaction is carried out at a lower temperature so that a higher proportion of the feedstock calorific value is retained in the resulting solid product still achieving the target to produce an ideal solid biofuel for many applications. During the process of torrefaction, the biomass is heated to 180–350°C and partly devolatilizes, leading to a decrease in solid mass, but the initial energy content of the feedstock biomass is mainly preserved in the solid product. Transport and storage torrefied biomass are densified into pellets or briquettes, best directly after torrefaction (Nanou et al, 2017). The attendant capital and operating costs, as well as conversion losses, are, offset by recirculating the heat from gas combustion and resulting in savings in drying as well as savings in other steps in the biomass utilization chain—logistics, storage, handling, milling, and combustion. Survey and interviews had no scientific claims but rather the goal to get a feeling for the situation of the industry and the ongoing individual activities

UPCOMING OPPORTUNITIES FOR TORREFACTION
CURRENT PRODUCTION
Intended NCV
Pellet Pellet Pellet Pellet
Findings
FINAL CONSIDERATIONS
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.