Abstract
Abstract The torrefaction characteristics of a microalga (Chlorella vulgaris ESP-31) residue in inert (N2) and non-inert (CO2) atmospheres at temperatures of 200–300 °C with the durations of 15–60 min are investigated. A parameter of torrefaction severity index (TSI) is employed to account for the thermal degradation phenomena. The results indicate that the enhancement factor of higher heating value, energy yield, and atomic H/C and O/C ratios versus TSI are strongly characterized by a linear relationship. The solid and energy yields of the residue torrefied in CO2 are lower than in N2 inasmuch as the thermal degradation in the former is more active, presumably due to the intensified reaction of CO2 with volatile matters in the biomass. At a given energy yield, the microalga residue torrefied at a lower temperature accompanied by a longer duration results in a fuel with higher energy densification and lower solid yield, thereby rendering the better torrefaction quality. On the other hand, a higher efficiency of energy utilization for upgrading the biomass can be achieved at a higher temperature along with a shorter duration. It is thus concluded that the optimization of torrefaction operation depends on the requirement of energy densification or energy utilization on fuel.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.