Abstract

We demonstrated that a nitric oxide (NO) molecule on Cu(110) acts as an "ON-OFF-ON toggle switch" that can be turned on and off by repulsive force and electron injection, respectively. On the surface, NO molecules exist in three configurations: flat along the [001] direction (ON), upright (OFF), and flat along [001[over ¯]] (ON). An NO-functionalized tip, which was characterized by scanning tunneling microscopy and inelastic electron tunneling spectroscopy, can convert an upright NO adsorbate into a flat-lying NO. Atomic force microscopy and a simulation of the interactions between the NO molecules reveal that a repulsive force not aligned with the N-O bond provides the torque that detrudes the NO toggle; i.e., the upright NO adsorbate is tilted away from the tip. Therefore, the NO adsorbate behaves as a nonvolatile sensor for the detection of locally applied repulsive torque.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call