Abstract
In recent years the interest towards electric vehicles has increased. Among the different layout of the electric powertrain, four in-wheel motors appear to be one of the most attractive. This configuration in fact allows to re-design inner spaces of the vehicle and presents, as an embedded feature, the possibility of independently distributed braking and driving torques on the wheels in order to generate a yaw moment able to improve vehicle handling (torque vectoring). The present paper presents and compares two different torque vectoring control strategies for an electric vehicle with four in-wheel motors. Performances of the control strategies are evaluated by means of numerical simulations of open and closed loop maneuvers, also taking into account their energetic efficiency.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.