Abstract

Fully electric vehicles with individually controlled powertrains can achieve significantly enhanced vehicle response, in particular by means of Torque Vectoring Control (TVC). This paper presents a TVC strategy for a Formula SAE (FSAE) fully electric vehicle, the “T-ONE” car designed by “UninaCorse E-team” of the University of Naples Federico II, featuring four in-wheel motors. A Matlab-Simulink double-track vehicle model is implemented, featuring non-linear (Pacejka) tyres. The TVC strategy consists of: (i) a reference generator that calculates the target yaw rate in real time based on the current values of steering wheel angle and vehicle velocity, in order to follow a desired optimal understeer characteristic; (ii) a high-level controller which generates the overall traction/braking force and yaw moment demands based on the accelerator/brake pedal and on the error between the target yaw rate and the actual yaw rate; (iii) a control allocator which outputs the reference torques for the individual wheels. A driver model was implemented to work out the brake/accelerator pedal inputs and steering wheel angle input needed to follow a generic trajectory. In a first implementation of the model, a circular trajectory was adopted, consistently with the “skid-pad” test of the FSAE competition. Results are promising as the vehicle with TVC achieves up to ≈9% laptime savings with respect to the vehicle without TVC, which is deemed significant and potentially crucial in the context of the FSAE competition.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.