Abstract

In this paper, the authors introduce a type of transverse flux reluctance machines. These machines work without permanent magnets or electric rotor excitation and hold several advantages, including a high power density, high torque, and compact design. Disadvantages are a high fundamental frequency and a high torque ripple that complicates the control of the motor. The device uses soft magnetic composites (SMCs) for the magnetic circuit, which allows complex stator geometries with 3-D magnetic flux paths. The winding is made from hollow copper tubes, which also form the main heat sink of the machine by using water as a direct copper coolant. Models concerning the design and computation of the magnetic circuit, torque, and the power output are described. A crucial point in this paper is the determination of hysteresis and eddy-current losses in the SMC and the calculation of power losses and current displacement in the copper winding. These are calculated with models utilizing a combination of analytic approaches and finite-element method simulations. Finally, a thermal model based on lumped parameters is introduced, and calculated temperature rises are presented.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call