Abstract

In long-range transport of cargo, prototypical kinesin-1 steps along a single protofilament on the microtubule, an astonishing behavior given the number of theoretically available binding sites on adjacent protofilaments. Using a laser trap assay, we analyzed the trajectories of several representatives from the kinesin-2 class on freely suspended microtubules. In stark contrast to kinesin-1, these motors display a wide range of left-handed spiraling around microtubules and thus generate torque during cargo transport. We provide direct evidence that kinesin's neck region determines the torque-generating properties. A model system based on kinesin-1 corroborates this result: disrupting the stability of the neck by inserting flexible peptide stretches resulted in pronounced left-handed spiraling. Mimicking neck stability by crosslinking significantly reduced the spiraling of the motor up to the point of protofilament tracking. Finally, we present a model that explains the physical basis of kinesin's spiraling around the microtubule.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.