Abstract

We present a novel technique to measure high frequency electron spin resonance spectra in a broad frequency range (30-1440 GHz) with high sensitivity. We use a quasioptical setup with tunable frequency sources to induce magnetic resonance transitions. These transitions are detected by measuring the change in the magnetic torque signal by means of cantilever torque magnetometry. The setup allows tuning of the frequency, magnetic field, polarization, and the angle between the sample and the external magnetic field. We demonstrate the capabilities of this technique by showing preliminary results obtained on a single crystal of an Fe(4) molecular nanomagnet.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call