Abstract

The reduction in steady‐state isometric torque following a shortening muscle action when compared to a purely isometric contraction at the same muscle length and level of activation is termed torque depression (TD). The purpose of this study was to investigate spinal and supraspinal neural responses during the TD state of a maximal voluntary activation of the ankle dorsiflexors. Thirteen subjects (10 male) were recruited for the study. To explore alterations in corticospinal excitability during voluntary muscle activation in the TD state, motor evoked potentials (MEPs), cervicomedullary motor evoked potentials (CMEPs), and maximal compound muscle action potentials (Mmax) were elicited during the isometric steady‐state following active shortening (i.e., TD) and the purely isometric condition. A 15% reduction in steady‐state isometric torque (P < 0.05) was observed following isokinetic shortening at 40°/sec. Although mean evoked responses (MEP and CMEP) were not different in the TD state as compared with purely isometric state, the changes in evoked responses were inversely related to one another depending on the level of TD. These findings indicate that supraspinal and spinal responses are interrelated in the TD state. Furthermore, antagonist muscle coactivation during the isometric reference contraction was positively related to TD. These findings suggest the possibility of a relationship between the central nervous system and TD in humans. Further work should be performed to definitively link TD to specific spinal interneurons.

Highlights

  • Steady-state isometric torque following a shortening muscle action is less than that produced during a purely isometric contraction at the same muscle length and level of activation (Abbott and Aubert 1952; Edman 1980; Tilp et al 2009)

  • torque depression (TD) was successfully induced as the steady-state torque following active shortening was lower as compared with a purely isometric maximal voluntary contractions (MVCs)

  • This study revealed that normalized mean evoked responses, representing spinal and supraspinal excitability, did not change between TD and isometric reference (ISO) states

Read more

Summary

Introduction

Steady-state isometric torque following a shortening muscle action is less than that produced during a purely isometric contraction at the same muscle length and level of activation (Abbott and Aubert 1952; Edman 1980; Tilp et al 2009). This shortening-induced torque depression (TD) is an intrinsic property of skeletal muscle which occurs across muscle fiber types (Joumaa et al 2015), in animals and humans (Abbott and Aubert 1952; Lee et al 1999), and during maximal and submaximal electricallystimulated and voluntary contractions (Rousanoglou et al 2007; Ruiter et al 1998; Power et al 2014).

Objectives
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call