Abstract

Abstract The silyl substituent of 3-silylcyclobutene prefers inward rotation rather than outward rotation during a thermal ring-opening reaction, giving the Z-isomer predominantly. This intriguing behavior was explained by assuming electron-accepting interactions between the low-lying σ*-orbital of the silicon-carbon linkage and the highest occupied molecular orbital (HOMO) of the opening cyclobutene system, which are possible only in the inward transition state. On the basis of this finding, a novel method for the stereoselective synthesis of functionalized 1,3-butadiene derivatives from cyclobutenones was developed. Boryl substituents exhibit even stronger preference for inward rotation than silyl substituents as a result of electron delocalization from the cyclobutene HOMO into the vacant p-orbital of boron at the inward transition state.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.