Abstract

Bayesian adaptive methods for sensory threshold determination were conceived originally to track a single threshold. When applied to the testing of vision, they do not exploit the spatial patterns that underlie thresholds at different locations in the visual field. Exploiting these patterns has been recognized as key to further improving visual field test efficiency. We present a new approach (TORONTO) that outperforms other existing methods in terms of speed and accuracy. TORONTO generalizes the QUEST/ZEST algorithm to estimate simultaneously multiple thresholds. After each trial, without waiting for a fully determined threshold, the trial-oriented approach updates not only the location currently tested but also all other locations based on patterns in a reference data set. Since the availability of reference data can be limited, techniques are developed to overcome this limitation. TORONTO was evaluated using computer-simulated visual field tests: In the reliable condition (false positive [FP] = false negative [FN] = 3%), the median termination and root mean square error (RMSE) of TORONTO was 153 trials and 2.0dB, twice as fast with equal accuracy as ZEST. In the FP = FN = 15% condition, TORONTO terminated in 151 trials and was 2.2 times faster than ZEST with better RMSE (2.6 vs. 3.7dB). In the FP = FN = 30% condition, TORONTO achieved 4.2dB RMSE in 148 trials, while all other techniques had > 6.5dB RMSE and terminated much slower. In conclusion, TORONTO is a fast and accurate algorithm for determining multiple thresholds under a wide range of reliability and subject conditions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.