Abstract

Toroidal plasma rotation in the Princeton Large Torus, PLT, has been measured for various plasma and neutral-beam injection conditions. Measurements of the plasma rotational velocities were made from Doppler shifts of appropriate spectra lines and include data from both hydrogen and deuterium beams and co- and counter-injection at several electron densities. Without injection, a small but consistent toroidal rotation exists in a direction opposite to the plasma current (counter-direction) in the plasma centre but parallel to the current (co-direction) in the plasma periphery. Using these velocities measured in the absence of injection, and the plasma density and temperature gradients, radial electron fields can be determined from theory, giving Er ≈ 40 V · cm−1 in the plasma centre and Er ≈ 10 V · cm−1 near the plasma edge. Insertion of a local, 2.5% magnetic well produced no observable effect on the beam-driven rotation. Modelling of the time evolution and radial distribution of the rotation allows one to deduce an effective momentum diffusivity of the order of (1–5) × 104 cm2 · s−1.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.