Abstract

A motor-driven, high-current switch is being designed by Staubli Electrical Connectors in collaboration with Princeton Plasma Physics Laboratory to reverse the DIII-D Toroidal field coil current. The existing field reversing procedure requires approximately 4 h of labor performed between run days to reconfigure the bus work, thus requiring a separate run day to complete experimental scans with both field directions. This typically results in different wall conditions which complicate the results or make them invalid. The proposed switch will complete the reversal process in approximately 4–5 min, between shots, so that wall conditions are not a factor, and easily fits within the 10–12 min DIII-D shot cycle. The switch is a compact design fitting into a $157.5\times41$ cm envelope. The switch uses two copper pins that slide between Staubli MULTILAM contacts. The switch is rated for total current of 180-kA dc for 10 s with a 12-min repetition rate; the maximum operating coil current is 124-kA dc. The switch diagnostics include: voltage drop, current monitor, thermal monitors, position sensors, and motor torque. The switch is rated for 300 cycles per year, and 3000 cycles overall before contact replacement, with contact inspection yearly. The design details and operation of the switch are covered in this article.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.