Abstract
A novel terahertz nanofilm sensor consisting of toroidal dipole bound states in the continuum (TD-BIC) inspired Fano resonance metasurface is proposed and investigated, which exhibits both the TD character and BIC feature. When the mirror symmetry of the unit cell was broken, the TD resonance was excited and demonstrated by anti-aligned magnetic dipoles and calculated scattering powers and the BIC mode was verified with the quality factor satisfying the inverse square law. Combined with the amplitude difference referencing technique, the TD-BIC inspired Fano resonance was utilized for nanofilm sensing at THz frequencies for the first time. Simulation results show that the amplitude difference can be easily observed by comparing the resonance frequency shift under difference thicknesses of germanium overlayer. Moreover, by coating with a 40 nm-thick analyte overlayer, the sensitivity of amplitude difference can achieve 0.32/RIU, which is a significant value and more suitable for sensing nanofilm analytes than the traditional frequency shift method. These advantages make our proposed structure have potential applications in sensing nanofilm analytes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.