Abstract

In this work, we use reduced and perturbative models to examine the stability of toroidal Alfvén eigenmodes (TAEs) during the internal transport barrier (ITB) afterglow in JET experiments designed for the observation of alpha driven TAEs. We demonstrate that in JET-like conditions, it is sufficient to use an incompressible cold plasma model for the TAE to reproduce the experimental adiabatic features such as frequency and position. When ion cyclotron resonant heating (ICRH) is used to destabilize TAEs, the core-localised modes that are predicted to be most strongly driven by minority ICRH fast ions correspond to the modes observed in the DD experiments, and conversely, modes that are predicted to not be driven are not observed. Linear damping rates due to a variety of mechanisms acting during the afterglow are calculated, with important contributions coming from the neutral beam and radiative damping. For DT equivalent extrapolations of discharges without ICRH heating, we find that for the majority of modes, alpha drive is not sufficient to overcome radiative damping.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.