Abstract

AbstractIn this paper we consider some subalgebras of the d‐th Veronese subring of a polynomial ring, generated by stable subsets of monomials. We prove that these algebras are Koszul, showing that the presentation ideals have Gröbner bases of quadrics with respect to suitable term orders. Since the initial monomials of the elements of these Gröbner bases are square‐ free, it follows by a result of STURMFELS [S, 13.15], that the algebras under consideration are normal, and thus Cohen‐Macaulay.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.