Abstract
Special fibrations of toric varieties have been used by physicists, e.g. the school of Candelas, to construct dual pairs in the study of Het/F-theory duality. Motivated by this, we investigate in this paper the details of toric morphisms between toric varieties. In particular, a complete toric description of fibers - both generic and non-generic -, image, and the flattening stratification of a toric morphism are given. Two examples are provided to illustrate the discussions. We then turn to the study of the restriction of a toric morphism to a toric hypersurface. The details of this can be understood by the various restrictions of a line bundle with a section that defines the hypersurface. These general toric geometry discussions give rise to a computational scheme for the details of a toric morphism and the induced fibration of toric hypersurfaces therein. We apply this scheme to study the family of 4-dimensional elliptic Calabi-Yau toric hypersurfaces that appear in a recent work of Braun-Candelas-dlOssa-Grassi. The Maple codes that are employed for the computation are provided. Some directions for future work are listed in the end.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.