Abstract
We consider the metric space of all toric Kähler metrics on a compact toric manifold; when “looking at it from infinity” (following Gromov), we obtain the tangent cone at infinity, which is parametrized by equivalence classes of complete geodesics. In the present paper, we study the associated limit for the family of metrics on the toric variety, its quantization, and degeneration of generic divisors. The limits of the corresponding Kähler polarizations become degenerate along the Lagrangian fibration defined by the moment map. This allows us to interpolate continuously between geometric quantizations in the holomorphic and real polarizations and show that the monomial holomorphic sections of the prequantum bundle converge to Dirac delta distributions supported on Bohr-Sommerfeld fibers. In the second part, we use these families of toric metric degenerations to study the limit of compact hypersurface amoebas and show that in Legendre transformed variables they are described by tropical amoebas. We believe that our approach gives a different, complementary, perspective on the relation between complex algebraic geometry and tropical geometry.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.